MIDTERM 2 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Know how to:

- Given the graph of a function, sketch the graph of its derivative (2.8.5)
- Given 3 graphs, determine which one is the graph of $f, f^{\prime}, f^{\prime \prime}(2.8 .41)$
- Find the derivative of a function using the definition of the derivative (2.8.21, 2.8.28)
- Know how to find the derivative of a function
(1) Using the power rule $\left(\left(x^{n}\right)^{\prime}=n\left(x^{n-1}\right)\right.$, valid for all nonzero numbers n, even $\frac{1}{2}$, or $\sqrt{2}$) (3.1.6, 3.1.8)
(2) Using the sum rule $\left((f+g)^{\prime}=f^{\prime}+g^{\prime}\right)$ and the constant multiple rule $\left((c f)^{\prime}=\right.$ $c\left(f^{\prime}\right)$ (3.1.23)
(3) Using $\left(e^{x}\right)^{\prime}=e^{x}$, as well as $\left(a^{x}\right)^{\prime}=\ln (a) \cdot a^{x}$ and $(\ln (x))^{\prime}=\frac{1}{x}$ (3.1.17, 3.1.32, 3.6.3, 3.6.16, 3.6.18)
(4) Using the product rule $\left((f g)^{\prime}=\left(f^{\prime}\right) g+f\left(g^{\prime}\right)\right)$ and the quotient rule $\left(\left(\frac{f}{g}\right)^{\prime}=\right.$ $\left.\frac{\left(f^{\prime}\right) g-f\left(g^{\prime}\right)}{g^{2}}\right)(3.2 .15,3.2 .18,3.2 .24,3.2 .26)$
(5) Using derivatives of trigonometric functions $\left((\cos)^{\prime}=-\sin ,(\sin)^{\prime}=\cos\right.$, $\left.(\tan)^{\prime}=\sec ^{2}\right)(3.3 .10,3.3 .12,3.3 .24)$
(6) Using the chain rule $\left((f \circ g)^{\prime}(x)=g^{\prime}(x) \cdot f^{\prime}(g(x))\right)(3.4 .5,3.4 .13,3.4 .29$, 3.4.42, 3.4.46, 3.4.50, 3.4.71)
(7) Using implicit differentiation ($3.5 .11,3.5 .18,3.5 .27,3.5 .36,3.5 .54$)
(8) Using logarithmic differentiation (3.6.30, 3.6.41, 3.6.42, 3.6.50)

Note: Be sure to know how to combine those methods, and THINK about your problem before you tackle it!

- Find the equation of the tangent line to a graph at a point (3.1.35, 3.2.32, 3.3.24, 3.4.54, 3.5.28, 3.6.33)
- Find the equation of the normal line to a graph at a point (3.1.35)
- Find numbers where a tangent line to a graph is horizontal, or parallel to a given line (3.1.51, 3.1.55)
- Find $n^{t h}$ derivatives of functions (3.1.62)
- Solve word problems using derivatives (3.3.5, 3.3.37, 3.4.82, 3.7.10, 3.7.18), basically, derivatives represent rates of change
- Solve problems using $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ (3.3.39, 3.3.46, 3.3.51)
- Solve the differential equation $y^{\prime}=k y$ (i.e. $y=C e^{k x}$), and use that formula in real-life situations (3.8.3, 3.8.5)
- Using $y^{\prime}=k y$ and other information, find, for example C, or k, or y (something) or the half-life of an element (3.8.9, 3.8.10)
- Solve problems using Newton's law of cooling (3.8.13, 3.8.15)
- Solve related rates problems (3.9.13, 3.9.17, 3.9.18, 3.9.24, 3.9.36, 3.9.44)
- Find the linear approximation of a function f at a given point a (3.10.1, 3.10.3)
- Use a linear approximation to estimate a given number, e.g. $\sqrt{98}$ (3.10.25, 3.10.27, 3.10.38)
- Find the differential $d y$ of a function, and evaluate $d y$ for given values of x and $d x$ (3.10.15)
- Solve word problems using differentials (3.10.36)
- Given a graph, state the absolute/local maximum/minimum values of a function (4.1.5)
- Sketch the graph of a function with given properties having to do with local/absolute max/min (4.1.7, 4.1.10, 4.1.11, 4.1.14)
- Find the critical numbers of a given function (4.1.33, 4.1.35, 4.1.42, 4.1.44)
- Find the absolute max/min of a given function on a given closed interval (4.1.47, 4.1.51, 4.1.55, 4.1.61, 4.1.62, 4.1.63)
- Use the Mean Value Theorem to:
- Show that an equation has at most one/two roots (4.2.19, 4.2.20, 4.2.22)
- Show that an equation has exactly one root, using in addition the Intermediate Value Theorem (4.2.17, 4.2.18)
- Estimate the value of a function (look at 4.2.23, 4.2.24, 4.2.25, 4.2.26)
- Solve other problems using the mean value theorem (4.2.28, 4.2.29, 4.2.35, 4.2.36)
- Show that two functions f and g are equal by differentiating them and plugging in one value for x (4.2.32, 4.2.33)
- Show that $f<g$ by considering $h=f-g$, and differentiating $h(4.2 .27,4.3 .74)$
- Find intervals on which f is increasing/decreasing, finding the local max/min of f, as well as intervals of concavity and inflection points, given a graph or given a formula (4.3.8, 4.3.11, 4.3.13)
- Find a local max/min using the First and/or Second derivative tests (4.3.19)
- Sketch the graph of a function with given properties having to do with first/second derivatives (4.3.24, 4.3.26)
- Calculate limits using l'Hopital's rule or another method!!! (4.4.9, 4.4.14, 4.4.15, 4.4.29, 4.4.49, 4.4.59, 4.4.64, 4.4.72, as well as all the problems between 5 and 64 in section 4.4 if you need more practice!)
- Sketch the graph of a given function f, using the DISAIC-method, making sure to label your graph (4.5.5, 4.5.15, 4.5.21, 4.5.38, 4.5.52, 4.5.56):
- Domain
- Intercepts (x- and y- intercepts)
- Symmetry (even, odd, periodic)
- Asymptotes (horizontal, vertical, slant)
- Increasing/Decreasing/Local Max/Min (Calculate f^{\prime})
- Concave Up/Down/Inflection Points (calculate $f^{\prime \prime}$)
- Show that a given line is the slant asymptote to f at ∞ or $-\infty(4.5 .67,4.5 .68)$
- Find the slant asymptotes to f at ∞ or $-\infty(4.5 .64,4.5 .65)$

Note: If you have trouble with this, check out the 'Slant Asymptotes'-handout sent out on Thursday night

- Solve optimization problems (4.7.3, 4.7.16, 4.7.17, 4.7.19, 4.7.22, 4.7.25, 4.7.37, 4.7.46, 4.7.53, 4.7.67)
- Apply Newton's method once or twice on a given function f with a given initial value of $x_{0}(4.8 .5)$

Also, know how to derive the following

- The derivative of $\csc (x), \sec (x), \cot (x)$ (this is just the quotient rule)
- The derivative of $f^{-1}(x)$ in terms of $f^{\prime}(x)$ (3.6.67)
- The derivative of $\ln (x)$ and the derivative of $\ln (|x|)$
- The derivative of $\cos ^{-1}(x), \sin ^{-1}(x), \tan ^{-1}(x)$
- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$
- $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0$
- $e=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$
- Second derivatives using the chain rule (3.4.95)
- The solution of $T^{\prime}=k\left(T-T_{s}\right)$ (i.e. Newton's law of cooling)
- If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b)
- If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b)
- If $f^{\prime}(x)>0$ for all x in (a, b) except for a point c, and f is differentiable on (a, b), then f is increasing on (a, b) (4.3.71)
- If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f(x)=g(x)+c$, where c is a constant

Finally, know how to define/state the following (you don't need to know how to prove these)

- The derivative of a function f at a
- f is differentiable at a, or on I (I is an interval)
- The sum, product, quotient, chain rules (with all the assumptions)
- e (the new definition: e is the number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$)
- The linear approximation of f at a
- The differential $d y$ (i'ts just $d y=f^{\prime}(x) d x$)
- f has an absolute maximum/minimum at c
- f has a local maximum/minimum at c
- The extreme value theorem
- Fermat's theorem
- A critical number c of f
- Rolle's theorem
- The mean value theorem
- Increasing/Decreasing test
- The first derivative test
- Concave up/Concave down (WARNING: The definition used in the book is wrong! Use Prof. Christ's definition!!!)
- Inflection point
- The second derivative test
- L'Hopital's rule
- Slant asymptote at ∞ or $-\infty$
- Newton's method (just say $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$)

